کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
755786 896062 2014 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Building fast well-balanced two-stage numerical schemes for a model of two-phase flows
ترجمه فارسی عنوان
ساخت مدارهای عددی دو مرحلهای به خوبی تعادل برای یک مدل جریان دو فازی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی


• A one-parameter family of numerical schemes are constructed and tested.
• The schemes are capable of capturing stationary contact waves.
• Good orders of convergences are observed.

We present a set of well-balanced two-stage schemes for an isentropic model of two-phase flows arisen from the modeling of deflagration-to-detonation transition in granular materials. The first stage is to absorb the source term in nonconservative form into equilibria. Then in the second stage, these equilibria will be composed into a numerical flux formed by using a convex combination of the numerical flux of a stable Lax–Friedrichs-type scheme and the one of a higher-order Richtmyer-type scheme. Numerical schemes constructed in such a way are expected to get the interesting property: they are fast and stable. Tests show that the method works out until the parameter takes on the value CFL  , and so any value of the parameter between zero and this value is expected to work as well. All the schemes in this family are shown to capture stationary waves and preserves the positivity of the volume fractions. The special values of the parameter 0,1/2,1/(1+CFL)0,1/2,1/(1+CFL), and CFL in this family define the Lax–Friedrichs-type, FAST1, FAST2, and FAST3 schemes, respectively. These schemes are shown to give a desirable accuracy. The errors and the CPU time of these schemes and the Roe-type scheme are calculated and compared. The constructed schemes are shown to be well-balanced and faster than the Roe-type scheme.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 19, Issue 6, June 2014, Pages 1836–1858
نویسندگان
,