کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
758397 896426 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive synchronization of Cohen–Grossberg neural networks with unknown parameters and mixed time-varying delays
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Adaptive synchronization of Cohen–Grossberg neural networks with unknown parameters and mixed time-varying delays
چکیده انگلیسی

In this paper, we investigate the synchronization problem of chaotic Cohen–Grossberg neural networks with unknown parameters and mixed time-varying delays. An adaptive linear feedback controller is designed to guarantee that the response system can be synchronized with a drive system by utilizing Lyapunov stability theory and parameter identification. Our synchronization criteria are easily verified and do not need to solve any linear matrix inequality. These results generalize a few previous known results and remove some restrictions on amplification function and time delay. This research also demonstrates the effectiveness of application in secure communication. Numerical simulations are carried out to illustrate the main results.


► Adaptive controller to guarantee the synchronization of neural networks is obtained.
► The parameter identification method is applied to estimate the unknown parameters.
► This research shows the effectiveness of application in secure communication.
► An example is given to demonstrate the feasibility of the main results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 17, Issue 7, July 2012, Pages 3040–3049
نویسندگان
,