کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
758546 896437 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On a high-dimensional objective genetic algorithm and its nonlinear dynamic properties
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
On a high-dimensional objective genetic algorithm and its nonlinear dynamic properties
چکیده انگلیسی

The revival of multi-objective optimization is mainly resulted from the recent development of multi-objective evolutionary optimization that allows the generation of the overall Pareto front. This paper presents an algorithm called HOGA (High-dimensional Objective Genetic Algorithm) for high-dimensional objective optimization on the basis of evolutionary computing. It adopts the principle of Shannon entropy to calculate the weight for each object since the well-known multi-objective evolutionary algorithms work poorly on the high-dimensional optimization problem. To further discuss the nonlinear dynamic property of HOGA, a martingale analysis approach is then employed; some mathematical derivations of the convergent theorems are obtained. The obtained results indicate that this new algorithm is indeed capable of achieving convergence and the suggested martingale analysis approach provides a new methodology for nonlinear dynamic analysis of evolutionary algorithms.

Research highlights
► In this paper, we propose an algorithm called HOGA (High-dimensional Objective Genetic Algorithm) for high-dimensional objective optimization on the basis of evolutionary computing.
► We employ the martingale analysis approach to analyze the nonlinear dynamic property of HOGA.
► Our work provides a new way for nonlinear analysis of evolutionary algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 16, Issue 9, September 2011, Pages 3825–3834
نویسندگان
, , , ,