کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
765739 | 1462895 | 2013 | 8 صفحه PDF | دانلود رایگان |

This paper mainly focuses on the preparation, characterization, thermal properties and thermal stability and reliability of new form-stable composite phase change materials (PCMs) prepared by vacuum impregnation of paraffin within graphene oxide (GO) sheets. SEM and FT-IR techniques and TGA and DSC analysis are used for characterization of material and thermal properties. The composite PCM contained 48.3 wt.% of paraffin without leakage of melted PCM and therefore this composite found to be a form-stable composite PCM. SEM results indicate that the paraffin bounded into the pores of GO. FT-IR analysis showed there was no chemical reaction between paraffin and GO. Temperatures of melting and freezing and latent heats of the composite were 53.57 and 44.59 °C and 63.76 and 64.89 kJ/kg, respectively. Thermal cycling tests were done by 2500 melting/freezing cycling for verification of the form-stable composite PCM in terms of thermal reliability and chemical stability. Thermal conductivity of the composite PCM was highly improved from 0.305 to 0.985 (W/mk). As a result, the prepared paraffin/GO composite is appropriate PCM for thermal energy storage applications because of their acceptable thermal properties, good thermal reliability, chemical stability and thermal conductivities.
► The composite PCM was prepared with impregnation method.
► Shapes stabilized phase change material made with paraffin and GO composite.
► Determine effects of GO composite on shape stabilized PCM properties.
► The composite PCM has good thermal stability and form-stability.
► The composite PCM has much higher thermal conductivity than that of paraffin.
Journal: Energy Conversion and Management - Volume 67, March 2013, Pages 275–282