کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
766502 1462609 2016 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterizing two-timescale nonlinear dynamics using finite-time Lyapunov exponents and subspaces
ترجمه فارسی عنوان
مشخص کردن دو زمانه غیرخطی دینامیک با استفاده از معادلات لیاپانوف و زیر فضای زمان محدود
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی


• Boundary-layer type, two-timescale dynamics are characterized.
• Finite-time Lyapunov exponents indicate timescales in tangent linear dynamics and finite-time Lyapunov subspaces indicate the associated tangent space geometry.
• Points on a center manifold are determined when such a manifold exists.

Finite-time Lyapunov exponents and subspaces are used to define and diagnose boundary-layer type, two-timescale behavior in the tangent linear dynamics and to determine the associated manifold structure in the flow of a finite-dimensional nonlinear autonomous dynamical system. Two-timescale behavior is characterized by a slow-fast splitting of the tangent bundle for a state space region. The slow-fast splitting is defined using finite-time Lyapunov exponents and vectors, guided by the asymptotic theory of partially hyperbolic sets, with important modifications for the finite-time case; for example, finite-time Lyapunov analysis relies more heavily on the Lyapunov vectors due to their relatively fast convergence compared to that of the corresponding exponents. The splitting is used to characterize and locate points approximately on normally hyperbolic center manifolds via tangency conditions for the vector field. Determining manifolds from tangent bundle structure is more generally applicable than approaches, such as the singular perturbation method, that require special normal forms or other a priori knowledge. The use, features, and accuracy of the approach are illustrated via several detailed examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 36, July 2016, Pages 148–174
نویسندگان
, , , ,