کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
767228 897162 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Double reduction of a nonlinear (2+1) wave equation via conservation laws
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Double reduction of a nonlinear (2+1) wave equation via conservation laws
چکیده انگلیسی

Conservation laws of a nonlinear (2+1) wave equation utt = (f(u)ux)x +  (g(u)uy)y involving arbitrary functions of the dependent variable are obtained, by writing the equation in the partial Euler-Lagrange form. Noether-type operators associated with the partial Lagrangian are obtained for all possible cases of the arbitrary functions. If either of f(u) or g(u) is an arbitrary nonconstant function, we show that there are an infinite number of conservation laws. If both f(u) and g(u) are arbitrary nonconstant functions, it is shown that there exist infinite number of conservation laws when f′(u) and g′(u) are linearly dependent, otherwise there are eight conservation laws. Finally, we apply the generalized double reduction theorem to a nonlinear (2+1) wave equation when f′(u) and g′(u) are linearly independent.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 16, Issue 3, March 2011, Pages 1244–1253
نویسندگان
, , , , ,