کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7705277 1497293 2018 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Platinum-palladium nanoparticles-loaded on N-doped graphene oxide/polypyrrole framework as a high performance electrode in ethanol oxidation reaction
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Platinum-palladium nanoparticles-loaded on N-doped graphene oxide/polypyrrole framework as a high performance electrode in ethanol oxidation reaction
چکیده انگلیسی
Existing catalysts for ethanol oxidation in direct ethanol fuel cells (DEFC) are faced to significant challenges due to their poor performance and CO like intermediates poisoning tolerance at anode surface. Hence researchers are looking for new electrocatalysts in the ethanol oxidation. In this study, polypyrrole/N-doped graphene oxide (PPy/NGO) nanocomposite was prepared using in-situ polymerization method. Next the platinum-palladium (PtPd) was electrochemically decorated on PPy/NGO nanocomposite surface. In order to ensure the correct preparation of nanocomposite, fourier transform infrared spectroscopy (FT-IR) analysis was carried out to peruse the chemical structure of the nanocomposite and also to investigate their morphology, field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were used. The morphology of nanocomposite shows that PPy has penetrated into the space between NGO plates. Disparate electrochemical techniques like cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry (CA) were employed to evaluate the oxidation of ethanol. Results showed that PtPd/PPy/NGO exhibits improved electrocatalytic activity and stability for ethanol oxidation. Enhanced active surface area of the PtPd/PPy/NGO electrode (35.1 m2 g−1) contributes to increase in current density and decrease in over potential values in the ethanol oxidation as compared to PtPd electrocatalyst.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 43, Issue 32, 9 August 2018, Pages 15164-15175
نویسندگان
, , , ,