کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7705353 | 1497293 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An efficient approach for prediction of Warburg-type resistance under working currents
ترجمه فارسی عنوان
یک رویکرد کارآمد برای پیش بینی مقاومت مقاومتی ورببور در جریان کار
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
الکتروشیمی
چکیده انگلیسی
In the present study, an efficient approach for the prediction of Warburg-type element is proposed via the analysis of the anode-supported solid oxide fuel cell (SOFC) performance under various working conditions. The details of the performance, polarization curves, impedance behavior, and species distribution profiles within the electrode are investigated via the combination of equivalent circuit model (ECM) analysis and multiphysics numerical simulations. The multiphysics simulation is developed and calibrated with experimental results of SOFC button cells under various working currents. With the complete datasets generated from the calibrated simulations, the trends of the element parameters involved in equivalent circuit model are analyzed. Generalized empirical functions are proposed as well as the procedures of prediction of performance under different conditions. The verification cases show good agreement between the predicted results from proposed model and the reference results. This proposed approach can be utilized to quickly predict the properties for desired performance in the manufacturing processes, and it also has the potential of reducing the computational cost in the simulation of large SOFCs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 43, Issue 32, 9 August 2018, Pages 15445-15456
Journal: International Journal of Hydrogen Energy - Volume 43, Issue 32, 9 August 2018, Pages 15445-15456
نویسندگان
Tao Yang, Jian Liu, Harry Finklea, Shiwoo Lee, Willam K. Epting, Rubayyat Mahbub, Tim Hsu, Paul A. Salvador, Harry W. Abernathy, Gregory A. Hackett,