کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7706132 1497306 2018 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient light harvesting by NiS/CdS/ZnS NPs incorporated in C, N-co-doped-TiO2 nanotube arrays as visible-light sensitive multilayer photoanode for solar applications
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Efficient light harvesting by NiS/CdS/ZnS NPs incorporated in C, N-co-doped-TiO2 nanotube arrays as visible-light sensitive multilayer photoanode for solar applications
چکیده انگلیسی
Here, we report a significant enhancement in photo-electrochemical activity of co-doped/modified TiO2 nanotube arrays (TNAs). First, TiO2 nanostructures were sensitized with nitrogen and carbon via a single step/low cost anodization process and then modified with Nis/CdS/ZnS nano particles (NPs) by the successive ionic layer adsorption and reaction (SILAR) method at room temperature. Photo-electrochemical properties and physical/chemical characteristics of the pure and sensitized/modified TNAs were investigated using field emission scanning electron microscopy (FESEM), XRD, XPS and EDX, comprehensively. Electrochemical measurements and UV-Vis DRS spectroscopy of the photo-electrodes showed that co-doping with anions and modification with different NPs result in the broadening of the absorption region of visible light and the reduction of band gap energy. The mechanism responsible for the enhanced photo-electrochemical activity of the C, N-co-doped/NiS, CdS, ZnS NPs modified TNAs for the water reduction reaction using aqueous solutions of Na2S/Na2SO3 as sacrificial electrolyte under the whole spectrum of simulated solar light irradiation has been presented. The highest photocurrent in presence of sacrificial agent (Na2S/Na2SO3) was obtained as 18.79 mA/cm2, for the optimized SILAR loading cycles and dopants concentration. Furthermore, a high incident photon to current efficiency (IPCE) of about 82% for the optimum photo-anode had been achieved. These results confirm that the C, N-co-doped/NiS, CdS, ZnS NPs modified TNAs nanocomposite may offer a promising strategy to attain maximum efficiency in a variety of solar energy conversion systems, along with reduced photo-corrosion in the semiconductor-semiconductor heterojunction.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 43, Issue 19, 10 May 2018, Pages 9259-9278
نویسندگان
, , ,