کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7851789 | 1508853 | 2015 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Three-dimensional graphene layers prepared by a gas-foaming method for supercapacitor applications
ترجمه فارسی عنوان
لایه های گرافن سه بعدی با استفاده از روش فشرده سازی گاز برای کاربردهای ابرخازن تهیه شده است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مخزن سوپر روش گاز فوم، لایه گرافن سه بعدی، رفتار خازنی الکتروشیمیایی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
Inspired by baking bread, our research group demonstrates a novel method for baking three-dimensional (3D) graphene layers with an open porous network, pore size in the range of dozens of nanometers to several hundred nanometers, and a pore wall thickness of about 10 nm. Such continuously cross-linking structures not only effectively overcome the restacking and agglomeration of graphene nanosheets but also possess more channels between nanosheets to lower the resistance for electron access to the inter-space. Compared with reduced graphene oxide (rGO) prepared at the same temperature, the unique 3D porous-structured graphene layers also contain 4.3 at.% nitrogen. When the 3D graphene layers are employed as an active electrode material for a supercapacitor, a high specific capacitance (SC) of 231.2 F gâ1 at 1 A gâ1 is displayed after electrochemical activation, approximately two times that of rGO. Only <1.0% of the capacitance degrades after 8000 cycles, exhibiting its excellent cycle stability; furthermore, it liberates a high energy density of 32.1 Wh kgâ1 at a power density of 500 W kgâ1. The attractive performances of 3D graphene layers make them a promising candidate as an electrode material for supercapacitors.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Carbon - Volume 94, November 2015, Pages 879-887
Journal: Carbon - Volume 94, November 2015, Pages 879-887
نویسندگان
Junnan Hao, Yuqing Liao, Yayun Zhong, Dong Shu, Chun He, Songtao Guo, Yulan Huang, Jie Zhong, Lingling Hu,