کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7853380 | 1508870 | 2014 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Interfacial shear strength of reduced graphene oxide polymer composites
ترجمه فارسی عنوان
مقاومت برشی بین فاز کمپلکسهای پلیمری گرافین اکسید کاهش یافته است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
Interfacial shear strength (IFSS) between particle and matrix in particulate polymer composites is a critical property in determining the mechanical behaviors since it is directly related to not only their Young's modulus or specific strength, but also energy absorbing capability. However, the conventional techniques often present a technical challenge to accurately measure the IFSS between fillers and matrix in the composites. This is more apparent in graphene particulate composites due to their nano-scale dimensions as well as the platelet-shaped geometry. Here, the focus of this study is to use a semi-empirical approach to determine the IFSS of graphene particulate composites by combining experiments with finite element (FE) modeling. The materials of interest are reduced graphene oxide (RGO) and polycarbonate (PC). The tensile testing was performed to characterize the mechanical properties, while simultaneously monitoring the acoustic emission events in order to measure the global debonding stress (GDS) in the composites. By coupling thermal stress analysis and deformation analysis with the GDS as input to a FE model, the IFSS of the RGO particulate PC composites was successfully estimated by about 136Â MPa, avoiding unnecessary assumptions and uncertainties which are seem to be inevitable with the conventional techniques for the IFSS measurement.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Carbon - Volume 77, October 2014, Pages 390-397
Journal: Carbon - Volume 77, October 2014, Pages 390-397
نویسندگان
Hong-Kyu Jang, Hyung-Ick Kim, Thomas Dodge, Pengzhan Sun, Hongwei Zhu, Jae-Do Nam, Jonghwan Suhr,