کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7853869 | 1508870 | 2014 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hydrogen-assisted pulsed KrF-laser irradiation for the in situ photoreduction of graphene oxide films
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We report on the use of pulsed KrF-laser irradiation for the in situ reduction of graphene oxide (GO) films under both vacuum and partial hydrogen pressure. By exposing GO films to 500 pulses of a KrF-laser, at a fluence of 10 mJ/cm2, their sheet resistance (Rs) is dramatically reduced from highly insulating (â¼1010 Ω/sq) to conductive values of â¼3 kΩ/sq. By increasing the laser fluence, from 10 to 75 mJ/cm2, we were able to identify an optimal fluence around 35 mJ/cm2 that leads to highly conductive films with Rs values as low as 250 Ω/sq and 190 Ω/sq, under vacuum (10â5 Torr) and 50 mTorr of H2, respectively. Raman spectroscopy analyses confirmed the effective reduction of the KrF-laser irradiated GO films through the progressive recovery of the characteristic 2D band of graphene. Furthermore, systematic Fourier-transform infrared spectroscopy analysis has revealed that KrF-laser induced reduction of GO preferentially occurs through photodissociation and removal of carboxyl (COOH) and alcohol (OH) groups. A direct correlation is established between the electrical resistance of photoreduced GO films and their COOH and OH bond densities. The KrF-laser induced reduction of GO films is found to be more efficient under H2 background than under vacuum. It is concluded that our KrF-laser reduced GO films mainly consist of turbostratic graphite built from randomly organized few-layers-graphene building blocks, which contains some residual oxygen atoms and defects. Finally, by monitoring the KrF-laser fluence, it is shown that reduced GO films combining optical transmission as high as â¼80% along with sheet resistance as low as â¼500 Ω/sq can be achieved with this room-temperature and on-substrate process. This makes the laser-based reduction process developed here particularly attractive for photovoltaic hybrid devices using silicon substrates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Carbon - Volume 77, October 2014, Pages 857-867
Journal: Carbon - Volume 77, October 2014, Pages 857-867
نویسندگان
Vincent Le Borgne, Hamza Bazi, Takuya Hayashi, Yoong Ahm Kim, Morinobu Endo, My Ali El Khakani,