کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7963392 1514144 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Molecular dynamics study of the role of symmetric tilt grain boundaries on the helium distribution in nickel
ترجمه فارسی عنوان
مطالعه دینامیک مولکولی از نقش مرزهای دانه شیب متقارن بر توزیع هلیوم در نیکل
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی هسته ای و مهندسی
چکیده انگلیسی
Helium impurities, from either direct implantation or transmutation reactions, have been associated with embrittlement in nickel-based alloys. Helium has very low solubility in nickel, and has been found to aggregate at lattice defects such as vacancies, dislocations, and grain boundaries. The retention and precipitation of helium in nickel-based alloys have deleterious effects on the material mechanical properties. However, the underlying mechanisms that lead to helium effects in the host metal are not fully understood. In the present work, we investigate the role of symmetric tilt grain boundary (STGB) structures on the distribution of helium in nickel using molecular dynamics simulations. We investigate the family of STGBs specific to the 〈110〉 tilt axis. The present results indicate that accumulation of helium at the grain boundary may be modulated by details of grain boundary geometry. A plausible correlation between the grain boundary energy and misorientation with the accumulation and mobility of helium is proposed. Small clusters with up to 6 helium atoms show significant interstitial mobility in the nickel bulk, but also become sites for nucleation and grow of more stable helium clusters. High-energy GBs are found mainly populated with small helium clusters. The high mobility of small clusters along the GBs indicates the role of these GBs as fast two-dimensional channels for diffusion. In contrast, the accumulation of helium in large helium clusters at low-energy STGB creates a favorable environment for the formation of large helium bubbles, indicating a potential role for low-energy STGB in promoting helium-induced GB embrittlement.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Nuclear Materials - Volume 502, 15 April 2018, Pages 86-94
نویسندگان
, ,