کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7966188 | 1514185 | 2015 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Diffusion of point defects, nucleation of dislocation loops, and effect of hydrogen in hcp-Zr: Ab initio and classical simulations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی هسته ای و مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Diffusion of point defects, nucleation of dislocation loops, and the associated dimensional changes of pure and H-loaded hcp-Zr have been investigated by a combination of ab initio calculations and classical simulations. Vacancy diffusion is computed to be anisotropic with Dvac,basal = 8.6 Ã 10â6 eâQ/(RT) (m2/s) and Dvac,axial = 9.9 Ã 10â6 eâQ/(RT) (m2/s), Q = 69 and 72 kJ/mol for basal and axial diffusion, respectively. At 550 K vacancy diffusion is about twice as fast in the basal plane as in a direction parallel to the c-axis. Diffusion of self-interstitials is found to be considerably faster and anisotropic involving collective atomic motions. At 550 K diffusion occurs predominantly in the a-directions, but this anisotropy diminishes with increasing temperature. Furthermore, the diffusion anisotropy is very dependent on the local strain (c/a ratio). Interstitial H atoms are found to diffuse isotropically with DH = 1.1 Ã 10â7 eâ42/(RT) (m2/s). These results are consistent with experimental data and other theoretical studies. Molecular dynamics simulations at 550 K with periodic injection of vacancies and self-interstitial atoms reveal the formation of small nanoclusters, which are sufficient to cause a net expansion of the lattice in the a-directions driven by clusters of self-interstitials and a smaller contraction in the c-direction involving nanoclusters of vacancies. This is consistent with and can explain experimental data of irradiation growth. Energy minimizations show that vacancy c-loops can collapse into stacking-fault pyramids and, somewhat unexpectedly, this is associated with a contraction in the a-directions. This collapse can be impeded by hydrogen atoms. Interstitial hydrogen atoms have no marked influence on self-interstitial diffusion and aggregation. These simulations use a new Zr-H embedded atom potential, which is based on ab initio energies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Nuclear Materials - Volume 460, May 2015, Pages 82-96
Journal: Journal of Nuclear Materials - Volume 460, May 2015, Pages 82-96
نویسندگان
M. Christensen, W. Wolf, C. Freeman, E. Wimmer, R.B. Adamson, L. Hallstadius, P.E. Cantonwine, E.V. Mader,