کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7967931 | 1514196 | 2014 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی هسته ای و مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The unirradiated tensile properties for several different heats and thermomechanical treatment conditions of precipitation strengthened Hycon 3HP⢠CuNiBe (Cu-2%Ni-0.35%Be in wt.%) have been measured over the temperature range of 20-500 °C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for several heats, and the precipitate microstructure was characterized using transmission electron microscopy. The CuNiBe alloys exhibit very good combination of strength and conductivity at room temperature, with yield strengths of 630-725 MPa and electrical conductivities of 65-72% International Annealed Copper Standard (IACS). The strength remained relatively high at all test temperatures, with yield strengths of 420-520 MPa at 500 °C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250 °C, due to flow localization near grain boundaries (exacerbated by having only 10-20 grains across the gage thickness of the miniaturized sheet tensile specimens). Scanning electron microscopy observation of the fracture surfaces found a transition from ductile transgranular to ductile intergranular fracture with increasing test temperature. Fission neutron irradiation to a dose of â¼0.7 displacements per atom (dpa) at temperatures between 100 and 240 °C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation after irradiation increased with increasing irradiation temperature, with a uniform elongation of â¼3.3% observed at 240 °C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. Considering also previously published fracture toughness data, this indicates that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250 °C, and may be an attractive candidate for certain low-temperature fusion energy structural applications. Conversely, CuNiBe may not be preferred at intermediate temperatures of 250-500 °C due to the poor ductility and fracture toughness of CuNiBe alloys at temperatures ⩾250 °C. The potential deformation mechanisms responsible for the transition from transgranular to intergranular fracture are discussed. The possible implications for other precipitation-hardened alloys such as nickel based superalloys are briefly discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Nuclear Materials - Volume 449, Issues 1â3, June 2014, Pages 277-289
Journal: Journal of Nuclear Materials - Volume 449, Issues 1â3, June 2014, Pages 277-289
نویسندگان
S.J. Zinkle,