کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8058767 | 1520087 | 2015 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Nonlinear aerodynamic reduced order modeling by discrete time recurrent neural networks
ترجمه فارسی عنوان
آیرودینامیکی غیرخطی، مدلسازی نظم را با استفاده از شبکههای عصبی مجزا گسسته کاهش داد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی هوافضا
چکیده انگلیسی
Nowadays, viable estimations of transonic aerodynamic loads can be obtained through the tools of computational fluid dynamics. Nonetheless, even with the increasing available computer power, the cost of solving the related non-linear, large order models still impedes their widespread use in conceptual/preliminary aircraft design phases, whereas the related nonlinearities might critically affect design decisions. Therefore, it is of utmost importance to develop methods capable of providing adequately precise reduced order models, compressing large order aerodynamic systems within a highly reduced number of states. This work tackles such a problem through a discrete time recursive neural network formulation, identifying compact models through a training based on input-output data obtained from high-fidelity simulations of the aerodynamic problem alone. The soundness of such an approach is verified by first evaluating the aerodynamic loads resulting from the harmonic motion of an airfoil in transonic regime and then checking aeroelastic limit cycle oscillations inferred from such a reduced neural system against high fidelity response analyses.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aerospace Science and Technology - Volume 47, December 2015, Pages 406-419
Journal: Aerospace Science and Technology - Volume 47, December 2015, Pages 406-419
نویسندگان
Andrea Mannarino, Paolo Mantegazza,