کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8061752 | 1520625 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Abundant wave solutions of the Boussinesq equation and the (2+1)-dimensional extended shallow water wave equation
ترجمه فارسی عنوان
راه حل های موج فراوان معادله بوسانس و معادله موج (2 + 1)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی دریا (اقیانوس)
چکیده انگلیسی
In this article, we establish the exact wave solutions of the Boussinesq equation and the (2Â +Â 1)-dimensional extended shallow water wave equation by applying the new generalized (G'/G) -expansion method. When the condition of the fluid is such that the horizontal length scale is much greater than the vertical length scale, the shallow water equations are mostly suitable. In Ocean engineering, Boussinesq-type equations are commonly used in computer simulations for the model of water waves in shallow seas and harbors. We explained the new generalized (G'/G) -expansion method to seek further general traveling wave solutions of the above mentioned equations. The traveling wave solutions attained by this method are exposed in terms of hyperbolic, trigonometric and rational functions. The shape of the obtained solutions are bell shaped soliton, kink soliton, singular kink soliton, singular soliton, singular periodic solution and compaction. This method is very influential mathematical tool for extracting exact solutions of NLEEs which frequently arise in mathematical physics, engineering sciences and many scientific real world application fields.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ocean Engineering - Volume 165, 1 October 2018, Pages 69-76
Journal: Ocean Engineering - Volume 165, 1 October 2018, Pages 69-76
نویسندگان
Md. Dulal Hossain, Md. Khorshed Alam, M. Ali Akbar,