کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8062283 | 1520631 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dynamic reliability assessment of ship grounding using Bayesian Inference
ترجمه فارسی عنوان
ارزیابی قابلیت اطمینان دینامیکی پایه کشتی با استفاده از استنتاج بیزی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ایمنی کشتی، زمینی تحت نظارت قلب، سلسله مراتبی تجزیه و تحلیل بیزی،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی دریا (اقیانوس)
چکیده انگلیسی
The significant increase in the demand for shipping transportation using large vessels in restricted waters, such as cruising cargo vessels in channels, draws worldwide maritime industries' attention to mitigating potential grounding risks. Safer ship navigation requires a more accurate prediction tool to estimate the likelihood of a ship striking the seabed. This study presents a safety framework for under keel clearance failure analysis of vessels crossing shallow waters. The developed methodology can be applied by the designers, operators and port managers to maintain their shipping fleets operating at an acceptable level of grounding safety. A Hierarchical Bayesian Analysis is applied to estimate the probability of touching the seabed based on the results of dynamic under keel clearance obtained from time-domain hydrodynamic simulations. To illustrate the application of the proposed method, the performance of a large vessel is assessed when entering the Queensland coastal zone with maximum water depth of 12â¯m. The framework suggests that for a safe navigation with maximum failure probability of 3Ã10â5, the vessel should cross the passage at a speed lower than 3â¯m/s where the maximum tolerable incident wave height is 0.5â¯m.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ocean Engineering - Volume 159, 1 July 2018, Pages 47-55
Journal: Ocean Engineering - Volume 159, 1 July 2018, Pages 47-55
نویسندگان
Mohammad Mahdi Abaei, Ehsan Arzaghi, Rouzbeh Abbassi, Vikram Garaniya, Mohammadreza Javanmardi, Shuhong Chai,