کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8063679 | 1520643 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Sea state identification based on vessel motion response learning via multi-layer classifiers
ترجمه فارسی عنوان
شناسایی وضعیت کشور بر اساس پاسخ واکنش حرکتی کشتی از طریق طبقه بندی چند لایه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شناسایی دولت دریایی، استخراج ویژگی، طبقه بندی چند لایه، کشتی دریایی،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی دریا (اقیانوس)
چکیده انگلیسی
In order to extend the operational weather window for marine vessels under Dynamic Positioning (DP) control, a novel sea state identification method with multi-layer classifiers is proposed in this paper. Due to the distinction of system responses for various sea states, four motion signals including surge, sway, roll and yaw are adopted for classification purpose. Firstly, preprocessing techniques, like filtration and k-means clustering are performed to the raw data to filter out the “corrupted” low frequency (LF) information and generate the band-pass filter bank. Then, the processed data is decomposed into 20 categories via Hilbert-Huang transform (HHT), filter bank method and wavelet transform and 11 statistical features are extracted for each category. Subsequently, Max-relevance Min-redundancy (mRMR) method helps to select salient features with best trade-off between relevance and redundancy. With these selected features, a newly developed three-layer classification structure with Adaptive Neuro-Fuzzy Inference System (ANFIS), Random Forest (RF) and Particle Swarm Optimization (PSO) based combination classifiers is proposed to derive the current sea state. The simulation results demonstrate that the proposed identification system can achieve satisfactory classification accuracy. Moreover, the multi-layer classifier outperforms single layer classifier and can rapidly classify the sea state in real-time implementation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ocean Engineering - Volume 147, 1 January 2018, Pages 318-332
Journal: Ocean Engineering - Volume 147, 1 January 2018, Pages 318-332
نویسندگان
Fangwen Tu, Shuzhi Sam Ge, Yoo Sang Choo, Chang Chieh Hang,