کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8068145 | 1521110 | 2016 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Three higher order analytical nodal methods for multigroup neutron diffusion equations
ترجمه فارسی عنوان
سه روش توزیع تحلیلی مرتبه بالاتر برای معادلات نفوذ چندتایی نوترون
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
معادلات نفوذ چندتایی نوترون، روش های متداول، معادلات پاسخ ماتریس، شتاب دوباره تعادل، شتاب اضافی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
مهندسی انرژی و فناوری های برق
چکیده انگلیسی
This work presents three efficient higher order analytical nodal methods for the numerical solution of a two-dimensional multigroup neutron diffusion equation in Cartesian geometry based on the use of the successive polynomial-weighted transverse integrations technique to convert a one-group diffusion equation to a system of coupled one-dimensional ordinary differential equations. These equations are then solved analytically over each homogenized cell after adequate approximations of the resulting effective sources after transversal integrations. Coupling between the approximate transverse flux-moments is achieved by imposing uniqueness constraint on their moments values. Adjacent elements are coupled by enforcing continuity conditions on the flux and current moments at interfaces cells. The weighted cell-balance equations and current-continuity conditions are then used to derive the discrete equations. These methods are applied for solving numerically various 2D benchmark problems and theirs performances discussed. Numerical results demonstrates more efficiency for the third higher order analytical nodal method for which the alone unknowns considered are the transverse flux moments on the interfaces of the homogenized elements.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 87, Part 2, January 2016, Pages 561-568
Journal: Annals of Nuclear Energy - Volume 87, Part 2, January 2016, Pages 561-568
نویسندگان
Najib Guessous,