کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8075756 | 1521465 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A hybrid short-term load forecasting with a new input selection framework
ترجمه فارسی عنوان
یک پیش بینی بار کوتاه مدت ترکیبی با چارچوب انتخاب جدید ورودی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
This paper proposes a hybrid STLF (short-term load forecasting) framework with a new input selection method. BNN (Bayesian neural network) is used to forecast the load. A combination of the correlation analysis and â2-norm selects the appropriate inputs to the individual BNNs. The correlation analysis calculates the correlation coefficients between the training inputs and output. The Euclidean distance with respect to a desired correlation coefficient is then calculated using the â2-norm. The input sub-series with the minimum Euclidean norm is selected as the most correlated input and decomposed by a wavelet transform to provide the detailed load characteristics for BNN training. The sub-series whose Euclidean norms are closest to the minimum norm are further selected as the inputs for the individual BNNs. A weighted sum of the BNN outputs is used to forecast the load for a particular day. New England load data are used to evaluate the performance of the proposed input selection method. A comparison of the proposed STLF with the existing state-of-the-art forecasting techniques shows a significant improvement in the forecast accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 81, 1 March 2015, Pages 777-786
Journal: Energy - Volume 81, 1 March 2015, Pages 777-786
نویسندگان
M. Ghofrani, M. Ghayekhloo, A. Arabali, A. Ghayekhloo,