کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8077382 | 1521474 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
STLF (short term electric load forecasting) plays an important role in the operation of power systems. In this paper, a new model based on combination of the WT (wavelet transform) and GM (grey model) is presented for STLF and is improved by PSO (particle swarm optimization) algorithm. In the proposed model, the weather data including mean temperature, mean relative humidity, mean wind speed, and previous days load data are considered as the model inputs. Also, the wavelet transform is used to eliminate the high frequency components of the previous days load data and improve the accuracy of prediction. To improve the accuracy of STLF, the generation coefficient of GM is enhanced using PSO algorithm. To verify its efficiency, the proposed method is used for New York's and Iran's load forecasting. Simulation results confirm favourable performance of the proposed method in comparison with the previous methods studied.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 72, 1 August 2014, Pages 434-442
Journal: Energy - Volume 72, 1 August 2014, Pages 434-442
نویسندگان
Saadat Bahrami, Rahmat-Allah Hooshmand, Moein Parastegari,