کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8078969 | 1521483 | 2013 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance-Validation and CFD optimization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Energy separation procedure of vortex tube can be improved by using convergent nozzle. In the experimental investigation, the parameters are focused on the convergence ratio of nozzle, inlet pressure and number of nozzle intakes. The effect of the convergence ratio of nozzle is investigated in the range of 1-2.85. The most objective of this investigation is the demonstration of the successful use of computational fluid dynamics (CFD) in order to develop a design tool that can be utilized with confidence over a range of operating conditions and geometries, thereby providing a powerful tool that can be employed to optimize vortex tube design as well as assess its utility in the field of new applications and industries. A computational fluid dynamics model was developed to predict the performances of the vortex tube system. The numerical investigation was carried out by full three-dimensional (3D) steady state CFD simulation using FLUENT 6.3.26. This model utilizes the k-É turbulence model to solve the flow equations. Experiments were also conducted to validate results obtained for the simulation. First purpose of numerical study in this case was validation with experimental data to confirm these results and the second was the optimization of experimental model to achieve the highest performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 63, 15 December 2013, Pages 195-204
Journal: Energy - Volume 63, 15 December 2013, Pages 195-204
نویسندگان
Seyed Ehsan Rafiee, Masoud Rahimi,