کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
808445 905702 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecasting systems reliability based on support vector regression with genetic algorithms
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Forecasting systems reliability based on support vector regression with genetic algorithms
چکیده انگلیسی

This study applies a novel neural-network technique, support vector regression (SVR), to forecast reliability in engine systems. The aim of this study is to examine the feasibility of SVR in systems reliability prediction by comparing it with the existing neural-network approaches and the autoregressive integrated moving average (ARIMA) model. To build an effective SVR model, SVR's parameters must be set carefully. This study proposes a novel approach, known as GA-SVR, which searches for SVR's optimal parameters using real-value genetic algorithms, and then adopts the optimal parameters to construct the SVR models. A real reliability data for 40 suits of turbochargers were employed as the data set. The experimental results demonstrate that SVR outperforms the existing neural-network approaches and the traditional ARIMA models based on the normalized root mean square error and mean absolute percentage error.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Reliability Engineering & System Safety - Volume 92, Issue 4, April 2007, Pages 423–432
نویسندگان
,