کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8125790 1522794 2016 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Guided Pattern Search with a non-intrusive reduced order modeling for oil production optimization: Brugge field case study
ترجمه فارسی عنوان
یک الگوی راهنمای هدایت با یک مدل غیرمستقیم کاهش سفارش برای بهینه سازی تولید نفت: مطالعه موردی بلژیک
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی اقتصادی
چکیده انگلیسی
We propose a non-intrusive Reduce Order Modeling (ROM) based on an Artificial Neural Network (ANN) and Discrete Empirical Interpolation Method (DEIM) to reduce the computational burden of reservoir simulations. The proposed ANN-DEIM method has been successfully applied to Brugge field that is modeled in a black box reservoir simulator while trying to preserve the dynamics of the reservoir. Another contribution of this paper is to propose a Guided Pattern Search algorithm for oil production optimization. The algorithm is guided by physical properties of the reservoir and intends to reduce the number of function evaluations in the optimization process. The application of the Guided Pattern Search to the case study reduced the function evaluations by 7 times while improving the initial Net Present Value (NPV) more than 23% using a full order model. Furthermore, the Guided Pattern Search coupled with the proposed ANN-DEIM converged to a better production scenario as compared with the solution found by a Pattern Search algorithm. The reason for this observation is the capability of Guided Pattern Search to utilize the reservoir physical properties besides NPV in the optimization process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Petroleum Science and Engineering - Volume 147, November 2016, Pages 570-584
نویسندگان
, ,