کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8160911 | 1525112 | 2018 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
First-principles research on the optical and electrical properties and mechanisms of In-doped ZnO
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک ماده چگال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The absorption spectra and conductivity of In-doped ZnO still exhibit differences. To resolve this contradiction, the ZnO supercell models with different In doping amounts and the Zn0.9375In0.0625(Zni)0.0625O supercell model were both constructed. When the geometrical structure of all the models was optimized, the GGAÂ +Â U and GGA used to calculate the energy. In the range of In doping used in this study, the formation energy of In-doped ZnO under Zn-rich conditions is lower than that under O-rich conditions, thereby implying a more stability of In-doped ZnO under Zn-rich than that under O-rich. With the increased In doping content, the volume and the formation energy of the doped system increase, the doped systems become unstable, and doping becomes difficult. Furthermore, the band gaps are narrowed, and the red shift of absorption spectrum is enhanced. In the In doping amount ranging within 0.01389-0.05556, the electron effective mass decreases first and subsequently increases, and the electron concentration increases. The mobility and conductivity also increase first and subsequently decrease. These results are in accordance with the experimental results. The volume of Zn0.9375In0.0625(Zni)0.0625O with the coexistence of In replacing Zn and interstitial Zn is large. The band gap is widened and the absorption spectrum is blue-shifted in the UV region.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica B: Condensed Matter - Volume 537, 15 May 2018, Pages 258-266
Journal: Physica B: Condensed Matter - Volume 537, 15 May 2018, Pages 258-266
نویسندگان
Qingyu Hou, Dongmin Xi, Wenling Li, Xiaofang Jia, Zhenchao Xu,