کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8288520 1536255 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel miR17/protein tyrosine phosphatase-oc/EphA4 regulatory axis of osteoclast activity
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
A novel miR17/protein tyrosine phosphatase-oc/EphA4 regulatory axis of osteoclast activity
چکیده انگلیسی
Information about the molecular mechanisms leading to the activation of the osteoclast is relatively limited. While there is compelling evidence that the signaling mechanisms of Src and integrin β3 are essential for osteoclast activation, the regulation of these two signaling mechanisms is not fully understood. In this review, evidence supporting a novel regulatory axis of osteoclast activation that plays an upstream regulatory role in both the Src and integrin β3 signaling during osteoclast activation is discussed. This regulatory axis contains three unique components: a structurally unique transmembrane protein-tyrosine phosphatase, PTP-oc, EphA4, and miR17. In the first component, PTP-oc activates the Src signaling through dephosphorylation of the inhibitory tyr-527 of Src. This in turn activates the integrin β3 signaling, enhances the JNK2/NFκB signaling, promotes the ITAM/Syk signaling, and suppresses the ITIM/Shp1 signaling; the consequence of which is activation of the osteoclast. In the second component, EphA4 inhibits osteoclast activity by suppressing the integrin β3 signaling. PTP-oc relieves the suppressive actions of EphA4 by directly dephosphorylating EphA4. In the third component, PTP-oc expression is negatively regulated by miR17. Accordingly, suppression of miR17 during osteoclast activation upregulates the PTP-oc signaling and suppresses the EphA4 signaling, resulting in the activation of the osteoclast. This regulatory axis is unique, in that each of the three components acts to exert suppressive action on their respective immediate downstream inhibitory step. Because the final downstream event is the EphA4-mediated inhibition of osteoclast activation, the overall effect of this mechanism is the stimulation of osteoclast activity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Archives of Biochemistry and Biophysics - Volume 650, 15 July 2018, Pages 30-38
نویسندگان
, ,