کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8326630 1540195 2018 48 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An in-depth view of potential dual effect of thymol in inhibiting xanthine oxidase activity: Electrochemical measurements in combination with four way PARAFAC analysis and molecular docking insights
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
An in-depth view of potential dual effect of thymol in inhibiting xanthine oxidase activity: Electrochemical measurements in combination with four way PARAFAC analysis and molecular docking insights
چکیده انگلیسی
Xanthine oxidase (XO) can catalyze xanthine to uric acid and has also been linked with the extension of some serious diseases such as cancer, gout, diabetes and so on. Thymol is a part of diet in the form of spices. Due to the high antioxidant activity, its inhibitory effect on XO was studied in the present work. XO organized in four redox domains which exhibiting electrochemical signals. Therefore, voltammetric methods can be used to obtain the valuable information about the action mechanism of thymol on XO. However, there are extreme complexities in these biological sample matrices which make the deeper understanding of inhibition mechanism of thymol on XO activity is difficult. Thus, development of electrochemical techniques coupled with the four-way parallel factor analysis (PARAFAC) has provided promising solutions for analyzing of complex matrix. To better explore this inhibitory effect, electrochemical technologies have been used as a complement with ultraviolet and visible (UV-Vis) spectroscopy and molecular docking studies. For the first time, molecular docking studies were used to gain a fundamental understanding to explain how the electron transfer coupling occurs at XO active sites in the presence of thymol. It is in good agreement with the experimental data. These studies reveal that thymol could enter into the catalytic centers of XO. Also, it inhibits the XO activity through the direct binding to flavin adenine dinucleotides (FAD) center. The results display dose-dependent inhibition of XO with thymol. Its inhibitory activity was linked to its antioxidant properties to reduce the formation of free radicals (FRs) and related diseases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Biological Macromolecules - Volume 119, November 2018, Pages 1298-1310
نویسندگان
, , , , ,