کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8326744 | 1540196 | 2018 | 45 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Biosynthesis, molecular modeling and statistical optimization of xylanase from a mangrove associated actinobacterium Streptomyces variabilis (MAB3) using Box-Behnken design with its bioconversion efficacy
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
زیست شیمی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The present study was undertaken to evaluate the biosynthesis, molecular modeling and statistical optimization of xylanase production through Box-Behnken design by a mangrove associated actinobacterium Streptomyces variabilis (MAB3). Initially, the production of xylanase by the selected strain was carried through submerged fermentation using birchwood xylan as substrate. Further the xylanase production was statistically optimized through Box-Behnken design. It showed 5.30 fold increase of xylanase production by the isolate compared to 'one factor at a time approach' in the presence of the basal medium containing birchwood xylan (2.0% w/v) at pHâ¯8.2, temperature 46.5â¯Â°C, inoculum size of 2% for 68â¯h. The analysis of variance (ANOVA) revealed high coefficient of determination (R2â¯=â¯0.9490) for the respective responses at significant level (Pâ¯<â¯0.0001). The xylanase was purified by different purification steps and it resulted 5.30 fold increase with the yield of 21.27% at the final step using sephadex G-75 chromatography. The molecular weight of the purified xylanase was observed as 50â¯kDa on 10% SDS-PAGE. The homology 3D structure of the purified xylanase protein was predicted and this protein encodes with 420 amino acid residues. The maximum activity of purified xylanase was observed at pHâ¯8, temperature 40â¯Â°C and the production medium supplemented with 1â¯mM Ca2+ metal ion, 2.0% xylan and 1.5% NaCl. The kinetic parameters of the purified xylanase expressed the Km and Vmax values of 5.23â¯mg/ml and 152.07â¯Î¼g/min/mg, respectively. Finally, the xylanolytic hydrolysis of pretreated agro-residues, especially the rice straw substituted medium yielded maximum (46.28â¯mg/g) level of reducing sugar and saccharification (63.18%), followed by bioethanol production (3.92â¯g/l) at 72â¯h of incubation. Based on the results, it could be confirmed that the selected isolate is a potent strain for xylanase production and also it can able to convert the pretreated agro-residues into economically important byproduct like bioethanol.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Biological Macromolecules - Volume 118, Part A, 15 October 2018, Pages 195-208
Journal: International Journal of Biological Macromolecules - Volume 118, Part A, 15 October 2018, Pages 195-208
نویسندگان
Muthusamy Sanjivkumar, Tamilselvan Silambarasan, Ramasamy Balagurunathan, Grasian Immanuel,