کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8340570 | 1541241 | 2015 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
ARMADA: Using motif activity dynamics to infer gene regulatory networks from gene expression data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
زیست شیمی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Here we extend MARA by presenting ARMADA, which models the activity dynamics of regulators across a time course, and infers the causal interactions between the regulators that drive the dynamics of their activities across time. We have implemented ARMADA as part of our ISMARA webserver, ismara.unibas.ch, allowing any researcher to automatically apply it to any gene expression time course. To illustrate the method, we apply ARMADA to a time course of human umbilical vein endothelial cells treated with TNF. Remarkably, ARMADA is able to reproduce the complex observed motif activity dynamics using a relatively small set of interactions between the key regulators in this system. In addition, we show that ARMADA successfully infers many of the key regulatory interactions known to drive this inflammatory response and discuss several novel interactions that ARMADA predicts. In combination with ISMARA, ARMADA provides a powerful approach to generating plausible hypotheses for the key interactions between regulators that control gene expression in any system for which time course measurements are available.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Methods - Volume 85, 1 September 2015, Pages 62-74
Journal: Methods - Volume 85, 1 September 2015, Pages 62-74
نویسندگان
Peter J. Pemberton-Ross, Mikhail Pachkov, Erik van Nimwegen,