کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8343676 1541552 2017 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Impact of mutations within the [Fe-S] cluster or the lipoic acid biosynthesis pathways on mitochondrial protein expression profiles in fibroblasts from patients
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Impact of mutations within the [Fe-S] cluster or the lipoic acid biosynthesis pathways on mitochondrial protein expression profiles in fibroblasts from patients
چکیده انگلیسی
Lipoic acid (LA) is the cofactor of the E2 subunit of mitochondrial ketoacid dehydrogenases and plays a major role in oxidative decarboxylation. De novo LA biosynthesis is dependent on LIAS activity together with LIPT1 and LIPT2. LIAS is an iron‑sulfur (Fe-S) cluster-containing mitochondrial protein, like mitochondrial aconitase (mt-aco) and some subunits of respiratory chain (RC) complexes I, II and III. All of them harbor at least one [Fe-S] cluster and their activity is dependent on the mitochondrial [Fe-S] cluster (ISC) assembly machinery. Disorders in the ISC machinery affect numerous Fe-S proteins and lead to a heterogeneous group of diseases with a wide variety of clinical symptoms and combined enzymatic defects. Here, we present the biochemical profiles of several key mitochondrial [Fe-S]-containing proteins in fibroblasts from 13 patients carrying mutations in genes encoding proteins involved in either the lipoic acid (LIPT1 and LIPT2) or mitochondrial ISC biogenesis (FDX1L, ISCA2, IBA57, NFU1, BOLA3) pathway. Ten of them are new patients described for the first time. We confirm that the fibroblast is a good cellular model to study these deficiencies, except for patients presenting mutations in FDX1L and a muscular clinical phenotype. We find that oxidative phosphorylation can be affected by LA defects in LIPT1 and LIPT2 patients due to excessive oxidative stress or to another mechanism connecting LA and respiratory chain activity. We confirm that NFU1, BOLA3, ISCA2 and IBA57 operate in the maturation of [4Fe-4S] clusters and not in [2Fe-2S] protein maturation. Our work suggests a functional difference between IBA57 and other proteins involved in maturation of [Fe-S] proteins. IBA57 seems to require BOLA3, NFU1 and ISCA2 for its stability and NFU1 requires BOLA3. Finally, our study establishes different biochemical profiles for patients according to their mutated protein.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Molecular Genetics and Metabolism - Volume 122, Issue 3, November 2017, Pages 85-94
نویسندگان
, , , , , , , , , , , , , , , ,