کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8351748 1541873 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The effect of noradrenergic attenuation by clonidine on inhibition in the stop signal task
ترجمه فارسی عنوان
تأثیر کاهش نورآدرنرژیک توسط کلونیدین بر مهار در کار سیگنال توقف
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
چکیده انگلیسی
Understanding the neuropharmacology of inhibition is of importance to fuel optimal treatment for disorders such as Attention Deficit/Hyperactivity Disorder. The aim of the present study was to assess the effect of noradrenergic antagonism by clonidine on behavioral-performance and brain-activity indices of inhibition. A placebo-controlled, double-blind, randomized, crossover design was implemented. Male (N = 21) participants performed in a visual stop signal task while EEG was recorded under clonidine in one session and under placebo in another. We expected that 100 μg clonidine would have a negative effect on EEG indices of inhibition, the Stop N2 and Stop P3. Furthermore, we expected that clonidine would negatively affect the behavioral measure of inhibition, the stop signal reaction time (SSRT). Behavioral analyses were performed on data of 17 participants, EEG analyses on a subset (N = 13). Performance data suggested that clonidine negatively affected attention (response variability, omissions) without affecting inhibition as indexed by SSRT. Electrophysiological data show that clonidine reduced the Stop P3, but not the Stop N2, indicating a partial negative effect on inhibition. Results show that it is unlikely that the Stop P3 reduction was related to the effect of clonidine on lapses of attention and on peripheral cardiovascular functioning. In conclusion, the current dose of clonidine had a negative effect on attention and a partial effect on inhibitory control. This inhibitory effect was restricted to the dorsal region of the prefrontal cortex (presumably the superior frontal gyrus) as opposed to the ventral region of the prefrontal cortex (right inferior frontal gyrus).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pharmacology Biochemistry and Behavior - Volume 110, September 2013, Pages 104-111
نویسندگان
, , , , ,