کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8418520 | 1545720 | 2013 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hybrid biogeography based simultaneous feature selection and MHC class I peptide binding prediction using support vector machines and random forests
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
MCCCorrelation based feature selectionBBOCFSSIVACOHSIGenetic algorithm - الگوریتم ژنتیکFeature selection - انتخاب ویژگیVariable importance - اهمیت متغیرBiogeography based optimization - بهینه سازی مبتنی بر بیوگرافیAnt Colony Optimization - بهینهسازی گروه مورچهها Random forests - جنگ های تصادفیGini Index - شاخص جینیhabitat suitability index - شاخص مناسب بودن زیستگاهCoefficient of correlation - ضریب همبستگیMatthews Correlation Coefficient - ضریب همبستگی متیوSVM - ماشین بردار پشتیبانیSupport vector machines - ماشین بردار پشتیبانی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
بیوتکنولوژی یا زیستفناوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Accurate detection of peptides binding to specific Major Histocompatibility Complex Class I (MHC-I) molecules is extremely important for understanding the underlying process of the immune system, as well as for effective vaccine design and developing immunotherapies. Development of learning algorithms and their application for binding predictions have thus speeded up the state-of-the-art in immunological research, in a cost-effective manner. In this work, we propose the application of a hybrid filter-wrapper algorithm employing concepts from the recently developed biogeography based optimization algorithm, in conjunction with SVM and Random Forests for identification of MHC-I binding peptides. In the process, we demonstrate the effectiveness of this evolutionary technique, coupled with weighted heuristics, for the construction of improved prediction models. The experiments have been carried out for the CoEPrA competition datasets (accessible online at: http://www.coepra.org) and the results show a marked improvement over the winner results in some situations and comparably good with regard to others .We thus hope to initiate further research on the application of this new bio-inspired methodology for immunological research.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Immunological Methods - Volume 387, Issues 1â2, 31 January 2013, Pages 284-292
Journal: Journal of Immunological Methods - Volume 387, Issues 1â2, 31 January 2013, Pages 284-292
نویسندگان
Atulji Srivastava, Shameek Ghosh, N. Anantharaman, V.K. Jayaraman,