کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8501108 1553839 2018 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Essential oil and monensin affect ruminal fermentation and the protozoal population in continuous culture
ترجمه فارسی عنوان
روغن اسانس و مننسین بر تخمیر شخم و جمعیت پروتوزولی در کشت مداوم تأثیر می گذارد
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم دامی و جانورشناسی
چکیده انگلیسی
The interaction of monensin and essential oil was hypothesized to suppress protozoa and methane production while maintaining normal rumen function. The objective of this study was to determine the effects of feeding monensin (MON) and CinnaGar (CIN, a commercial blend of cinnamaldehyde and garlic oil; Provimi North America, Brookville, OH) on ruminal fermentation characteristics. Continuous culture fermentors (n = 4) were maintained in 4 experimental periods in a 4 × 4 Latin square design. Four dietary treatments were arranged in a 2 × 2 factorial: (1) control diet, 37 g/d of dry matter (40 g/d at ∼92.5% dry matter) of a 50:50 forage:concentrate diet containing no additive; (2) MON at 11 g/909 kg of dry matter; (3) CIN at 0.0043% of dry matter; and (4) a combination of MON and CIN at the levels in (2) and (3). Treatment had no effects on protozoal populations, concentration of NH3N, total N flow of effluent, production of total volatile fatty acids, or flows of conjugated linoleic acid and total C18 fatty acids. The MON decreased acetate:propionate ratio and biohydrogenation of both total C18 and 18:1 cis-9 but increased protozoal generation time, concentration of peptide, and flow of 18:1 trans-11. The MON tended to decrease protozoal counts in effluent and flow of 18:0 but tended to increase propionate production. The CIN decreased true organic matter digestibility and protozoal N flow of effluent but increased nonammonia, nonmicrobial N flow. The CIN tended to decrease protozoal counts, microbial N flow, and neutral detergent fiber digestibility but tended to increase biohydrogenation of total C18, 18:2, and 18:3. The CIN tended to increase isovalerate production. The MON and CIN tended to interact for increased methane production and bacterial N flow. A second experiment was conducted to determine the effects of MON and CIN on protozoal nitrogen and cell volume in vitro. Four treatments included (1) control (feed only), (2) feed + 0.0043% dry matter CIN, (3) feed + 2.82 μM MON, and (4) feed + CIN + MON at the same levels as in (2) and (3). With no interactions, MON addition decreased percentage of protozoa that were motile and tended to decrease cell volume at 6 h. The CIN did not affect cell count or other indicators of motility or volume at either 3 or 6 h. Under the conditions of our study, we did not detect an additive response for MON and CIN to decrease protozoal counts or methane production. A 3-dimensional method is suggested to better estimate protozoal cell volume.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Dairy Science - Volume 101, Issue 6, June 2018, Pages 5069-5081
نویسندگان
, , , , , ,