کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
85365 158941 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data
چکیده انگلیسی

The development of molecular techniques for genetic analysis has enabled great advances in cereal breeding. However, their usefulness in hybrid breeding, particularly in assigning new lines to heterotic groups previously established, still remains unsolved. In this work we evaluate the performance of several state-of-art multiclass classifiers onto three molecular marker datasets representing a broad spectrum of maize heterotic patterns. Even though results are variable, they suggest supervised learning algorithms as a valuable complement to traditional breeding programs.

Research highlights▶ Molecular techniques have been proposed to assign maize inbreds to heterotic groups. ▶ We evaluate several supervised learning algorithms onto 3 maize datasets. ▶ Results suggest multiclass classifiers as an alternative to traditional statistical methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers and Electronics in Agriculture - Volume 74, Issue 2, November 2010, Pages 250–257
نویسندگان
, ,