کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8546100 1561688 2017 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of aquatic toxicity of benzene derivatives using molecular descriptor from atomic weighted vectors
ترجمه فارسی عنوان
پیش بینی سمیت آبزی از مشتقات بنزن با استفاده از توصیفگر مولکولی از بردارهای وزنی اتمی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بهداشت، سم شناسی و جهش زایی
چکیده انگلیسی
Several descriptors from atom weighted vectors are used in the prediction of aquatic toxicity of set of organic compounds of 392 benzene derivatives to the protozoo ciliate Tetrahymena pyriformis (log(IGC50)−1). These descriptors are calculated using the MD-LOVIs software and various Aggregation Operators are examined with the aim comparing their performances in predicting aquatic toxicity. Variability analysis is used to quantify the information content of these molecular descriptors by means of an information theory-based algorithm. Multiple Linear Regression with Genetic Algorithms is used to obtain models of the structure-toxicity relationships; the best model shows values of Q2 = 0.830 and R2 = 0.837 using six variables. Our models compare favorably with other previously published models that use the same data set. The obtained results suggest that these descriptors provide an effective alternative for determining aquatic toxicity of benzene derivatives.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Toxicology and Pharmacology - Volume 56, December 2017, Pages 314-321
نویسندگان
, , , , , ,