کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
866950 1470984 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Facile synthesis of polydopamine-coated molecularly imprinted silica nanoparticles for protein recognition and separation
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Facile synthesis of polydopamine-coated molecularly imprinted silica nanoparticles for protein recognition and separation
چکیده انگلیسی


• A facile method was developed for synthesis of PDA-coated protein-imprinted silica NPs.
• The imprinted silica NPs showed large binding capacity and high selectivity toward template.
• The imprinted silica NPs can be applied to the depletion of high-abundance BHb from cattle blood.

Surface imprinting over nanostructured matrices is an effective solution to overcome template removal and achieve high binding capacity. In this work, a facile method was developed for synthesis of polydopamine-coated molecularly imprinted silica nanoparticles (PDA-coated MIP silica NPs) based on self-polymerization of dopamine (DA) on the surface of silica NPs in the presence of template protein. Transmission electronic microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) showed that PDA layers were successfully attached on the surface of silica NPs and the corresponding thickness was about 5 nm, which enabled the MIP silica NPs to have fast binding kinetics and high binding capacity. Under the aqueous media, the imprinted silica NPs showed much higher binding affinity toward template than non-imprinted (NIP) silica NPs. The protein recognition properties were examined by single-protein or competitive batch rebinding experiments and rebinding kinetics study, validating that the imprinted silica NPs have high selectivity for the template. The resultant BHb–MIP silica NPs could not only selectively separate BHb from the protein mixture, but also specifically deplete high-abundance BHb from cattle whole blood. In addition, the stability and regeneration were also investigated, which indicated that the imprinted silica NPs had excellent reusability.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosensors and Bioelectronics - Volume 47, 15 September 2013, Pages 120–126
نویسندگان
, , , , , , ,