کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
867467 | 909783 | 2012 | 6 صفحه PDF | دانلود رایگان |

In this study we describe a novel method of sampling and quantifying wound biomarkers for clinical settings. We believe the chosen format will allow rapid assessments of wound healing and provide biomarker evidence-based decision points for treatment of the wound at the time of presentation. The wound monitoring principle uses a proprietary sample collection tool (a thermally reversible hydrogel) to sample and isolate biomarkers within a wound environment without further sample extraction/preparation steps. We show how gel samples can be analysed in a lateral flow assay format utilising fluorescent microspheres with optically discrete emission characteristics and demonstrate quantitative detection of two analytes (duplexing) achieved in a single test line. As a model assay, the chronic wound biomarkers interleukin 6 (IL6) and tumour necrosis factor alpha (TNFα) are used. Limits of detection of 48.5 pg/mL and 55.5 pg/mL respectively in hydrogel samples and 7.15 pg/mL and 10.7 pg/mL respectively in plasma are reported. We believe this is the first literature example of quantitative detection of multiple analytes within a single test line using spectral separation to distinguish the analytes.
► We present the first demonstration of within test-line lateral flow multiplexing.
► We propose a novel thermo-reversible hydrogel based wound sampling device.
► We are able to measure IL 6 and TNF alpha at clinically relevant concentrations.
Journal: Biosensors and Bioelectronics - Volume 34, Issue 1, 15 April 2012, Pages 215–220