کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
867620 1470992 2011 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Air-cathode structure optimization in separator-coupled microbial fuel cells
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Air-cathode structure optimization in separator-coupled microbial fuel cells
چکیده انگلیسی

Microbial fuel cells (MFC) with 30% wet-proofed air cathodes have previously been optimized to have 4 diffusion layers (DLs) in order to limit oxygen transfer into the anode chamber and optimize performance. Newer MFC designs that allow close electrode spacing have a separator that can also reduce oxygen transfer into the anode chamber, and there are many types of carbon wet-proofed materials available. Additional analysis of conditions that optimize performance is therefore needed for separator-coupled MFCs in terms of the number of DLs and the percent of wet proofing used for the cathode. The number of DLs on a 50% wet-proofed carbon cloth cathode significantly affected MFC performance, with the maximum power density decreasing from 1427 to 855 mW/m2 for 1–4 DLs. A commonly used cathode (30% wet-proofed, 4 DLs) produced a maximum power density (988 mW/m2) that was 31% less than that produced by the 50% wet-proofed cathode (1 DL). It was shown that the cathode performance with different materials and numbers of DLs was directly related to conditions that increased oxygen transfer. The coulombic efficiency (CE) was more affected by the current density than the oxygen transfer coefficient for the cathode. MFCs with the 50% wet-proofed cathode (2 DLs) had a CE of >84% (6.8 A/m2), which was substantially larger than that previously obtained using carbon cloth air-cathodes lacking separators. These results demonstrate that MFCs constructed with separators should have the minimum number of DLs that prevent water leakage and maximize oxygen transfer to the cathode.


► Air-cathode structure was optimized in separator-coupled MFCs.
► Carbon cloth with 30–50% wet-proofing was applicable to cathode.
► Power was positively related to oxygen mass transfer coefficient of cathode.
► Cathode should have minimum number of diffusion layers that prevent water leakage.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosensors and Bioelectronics - Volume 30, Issue 1, 15 December 2011, Pages 267–271
نویسندگان
, , , , , ,