کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
868156 909803 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging
چکیده انگلیسی

The advances in genomics and proteomics have unveiled an exhaustive catalogue of biomarkers that can potentially be used as diagnostic and prognostic indicators of genetic and infectious diseases. Current thrust in biosensor development is towards rapid, real-time, label-free and highly sensitive detection of the indicative biomarkers. While surface plasmon resonance imaging (SPRi) biosensors could potentially be the best suited candidate for biomarker-based diagnosis, important milestones need to be reached. Commercially available SPRi instrumentation is currently limited by the flow-cell technology to serial-sample processing and has limited sensitivity for the detection of markers present at low concentration. In this paper, we have implemented an approach to enhance sample handling and increase the sensitivity of the SPRi detection technique. We have developed a digital microfluidic platform with an integrated nanostructured biosensor interface that allows for rapid, ultra-low volume, sensitive, and automated on-chip SPRi detection of DNA hybridization reactions. Through the exploitation of electromagnetic properties of nanofabricated periodic gold nanoposts, SPRi signal was increased by 200% with the estimated limit of detection of 500 pM (90 attomoles). Using the versatile fluidic manipulation provided by the digital microfluidics, rapid and parallel target identification was achieved on multiple array elements within 1 min using 180 nL sample volume. By delivering multiple target analytes in individually addressable low volume droplets, without external pumps and fluidic interconnects, the overall assay time, cost and complexity was reduced. The proposed platform allows extreme versatility in the manipulation of precious low volume samples which makes this technology very suitable for diagnostic applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosensors and Bioelectronics - Volume 26, Issue 5, 15 January 2011, Pages 2053–2059
نویسندگان
, , ,