کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
868639 | 909811 | 2009 | 6 صفحه PDF | دانلود رایگان |

We aimed to develop microsensors for eventual glucose monitoring in diabetes, based on fluorescence lifetime changes in glucose/galactose-binding protein (GBP) labelled with the environmentally sensitive fluorophore dye, badan. A mutant of GBP was labelled with badan near the binding site, the protein adsorbed to microparticles of CaCO3 as templates and encapsulated in alternating nano-layers of poly-l-lysine and heparin. We used fluorescence lifetime imaging (FLIM) with two-photon excitation and time-correlated single-photon counting to visualize the lifetime changes in the capsules. Addition of glucose increased the mean lifetime of GBP-badan by a maximum of ∼2 ns. Analysis of fluorescence decay curves was consistent with two GBP states, a short-lifetime component (∼0.8 ns), likely representing the open form of the protein with no bound glucose, and a long-lifetime component (∼3.1 ns) representing the closed form with bound glucose and where the lobes of GBP have closed round the dye creating a more hydrophobic environment. FLIM demonstrated that increasing glucose increased the fractional proportion of the long-lifetime component. We conclude that fluorescence lifetime-based glucose sensing using GBP encapsulated with nano-engineered layer-by-layer films is a glucose monitoring technology suitable for development in diabetes management.
Journal: Biosensors and Bioelectronics - Volume 24, Issue 11, 15 July 2009, Pages 3229–3234