کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8686981 | 1580837 | 2018 | 47 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Evaluation of non-negative matrix factorization of grey matter in age prediction
ترجمه فارسی عنوان
بررسی مقادیر ماتریکس غیر منفی ماده خاکستری در پیش بینی سن
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
چکیده انگلیسی
Our results showed that our framework favorably compares with other approaches. They also demonstrated that the NNMF based factorization derived from one dataset could be efficiently applied to compress VBM data of another dataset and that granularities between 300 and 500 components give an optimal representation for age prediction. In addition to the good performance in healthy subjects our framework provided relatively localized brain regions as the features contributing to the prediction, thereby offering further insights into structural changes due to brain aging. Finally, our validation in clinical populations showed that our framework is sensitive to deviance from normal structural variations in pathological aging.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 173, June 2018, Pages 394-410
Journal: NeuroImage - Volume 173, June 2018, Pages 394-410
نویسندگان
Deepthi P. Varikuti, Sarah Genon, Aristeidis Sotiras, Holger Schwender, Felix Hoffstaedter, Kaustubh R. Patil, Christiane Jockwitz, Svenja Caspers, Susanne Moebus, Katrin Amunts, Christos Davatzikos, Simon B. Eickhoff,