کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
870334 | 1470993 | 2007 | 6 صفحه PDF | دانلود رایگان |

In this paper we present a novel wireless glucose biosensing system employing direct electron transfer principle based enzyme fuel cell. Using the glucose dehydrogenase complex, which is composed of a catalytic subunit containing FAD, the cytochrome c subunit that harbors heme c as the electron transfer subunit, and chaperone-like subunit, a direct electron transfer-type glucose enzyme fuel cell was constructed. The enzyme glucose fuel cell generated electric power, and the open-circuit voltage showed glucose concentration dependence, which suggests potential applications for this glucose-sensing system. We constructed a miniaturized “all-in-one” glucose enzyme fuel cell, which represents a compartmentless fuel that is based on the direct electron transfer principle. This involved the combination of a wireless transmitter system and a simple and miniaturized continuous glucose monitoring system, which operated continuously for about 3 days with stable response. This is the first demonstration of an enzyme-based direct electron transfer-type enzyme fuel cell and fuel cell-type glucose sensor which can be utilized as a subcutaneously implantable system for continuous glucose monitoring.
Journal: Biosensors and Bioelectronics - Volume 22, Issues 9–10, 15 April 2007, Pages 2250–2255