کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
876091 910824 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effective implementation of time–frequency matched filter with adapted pre and postprocessing for data-dependent detection of newborn seizures
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
پیش نمایش صفحه اول مقاله
Effective implementation of time–frequency matched filter with adapted pre and postprocessing for data-dependent detection of newborn seizures
چکیده انگلیسی

Neonatal EEG seizures often manifest as nonstationary and multicomponent signals, necessitating analysis in the time–frequency (TF) domain. This paper presents a novel neonatal seizure detector based on effective implementation of the TF matched filter. In the detection process, the TF signatures of EEG seizure are extracted to construct the TF templates used by the matched filter. Matching pursuit (MP) decomposition and narrowband filtering are proposed for the reduction of artifacts prior to seizure detection. Geometrical correlation is used to consolidate the multichannel detections and to reduce the number of false detections due to remnant artifacts. A data-dependent threshold is defined for the classification of EEG. Using 30 newborn EEG records with seizures, the classification process yielded an overall detection accuracy of 92.4% with good detection rate (GDR) of 84.8% and false detection rate of 0.36 FD/h. Better detection performance (accuracy >95%) was recorded for relatively long EEG records with short seizure events.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Engineering & Physics - Volume 35, Issue 12, December 2013, Pages 1762–1769
نویسندگان
, , ,