کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
876460 910845 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fundamental model of quasi-static wheelchair biomechanics
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
پیش نمایش صفحه اول مقاله
A fundamental model of quasi-static wheelchair biomechanics
چکیده انگلیسی

The performance of a wheelchair system is a function of user anatomy, including arm segment lengths and muscle parameters, and wheelchair geometry, in particular, seat position relative to the wheel hub. To quantify performance, researchers have proposed a number of predictive models. In particular, the model proposed by Richter is extremely useful for providing initial analysis as it is simple to apply and provides insight into the peak and transient joint torques required to achieve a given angular velocity. The work presented in this paper identifies and corrects a critical error; specifically that the Richter model incorrectly predicts that shoulder torque is due to an anteflexing muscle moment. This identified error was confirmed analytically, graphically and numerically. The authors have developed a corrected, fundamental model which identifies that the shoulder anteflexes only in the first half of the push phase and retroflexes in the second half. The fundamental model has been extended by the authors to obtain novel data on joint and net power as a function of push progress. These outcomes indicate that shoulder power is positive in the first half of the push phase (concentrically contracting anteflexors) and negative in the second half (eccentrically contracting retroflexors). As the eccentric contraction introduces adverse negative power, these considerations are essential when optimising wheelchair design in terms of the user's musculoskeletal system. The proposed fundamental model was applied to assess the effect of vertical seat position on joint torques and power. Increasing the seat height increases the peak positive (concentric) shoulder and elbow torques while reducing the associated (eccentric) peak negative torque. Furthermore, the transition from positive to negative shoulder torque (as well as from positive to negative power) occurs later in the push phase with increasing seat height. These outcomes will aid in the optimisation of manual wheelchair propulsion biomechanics by minimising adverse negative muscle power, and allow joint torques to be manipulated as required to minimise injury or aid in rehabilitation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Engineering & Physics - Volume 34, Issue 9, November 2012, Pages 1278–1286
نویسندگان
, , , , , ,