کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
876696 910859 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive regularization network based neural modeling paradigm for nonlinear adaptive estimation of cerebral evoked potentials
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
پیش نمایش صفحه اول مقاله
Adaptive regularization network based neural modeling paradigm for nonlinear adaptive estimation of cerebral evoked potentials
چکیده انگلیسی

In this paper we report an adaptive regularization network (ARN) approach to realizing fast blind separation of cerebral evoked potentials (EPs) from background electroencephalogram (EEG) activity with no need to make any explicit assumption on the statistical (or deterministic) signal model. The ARNs are proposed to construct nonlinear EEG and EP signal models. A novel adaptive regularization training (ART) algorithm is proposed to improve the generalization performance of the ARN. Two adaptive neural modeling methods based on the ARN are developed and their implementation and performance analysis are also presented. The computer experiments using simulated and measured visual evoked potential (VEP) data have shown that the proposed ARN modeling paradigm yields computationally efficient and more accurate VEP signal estimation owing to its intrinsic model-free and nonlinear processing characteristics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Engineering & Physics - Volume 29, Issue 9, November 2007, Pages 1008–1018
نویسندگان
, ,