کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
876934 910873 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hybrid multiresolution Slantlet transform and fuzzy c-means clustering approach for normal-pathological brain MR image segregation
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
پیش نمایش صفحه اول مقاله
Hybrid multiresolution Slantlet transform and fuzzy c-means clustering approach for normal-pathological brain MR image segregation
چکیده انگلیسی

The paper presents a new approach for automated segregation of brain MR images, using an improved orthogonal discrete wavelet transform (DWT), known as the Slantlet transform (ST), and a fuzzy c-means (FCM) clustering approach. ST has excellent time-frequency resolution characteristics and these can be achieved with shorter supports for the filter, compared to DWT employed for identical situations. FCM clustering, on the other hand, can provide efficient classification results, if it is implemented for well-processed input feature vectors. Thus, by combining both the ST and the FCM clustering approaches, a hybrid scheme has been developed that can segregate brain MR images. This automated tool when developed can infer whether the input image is that of a normal brain or a pathological brain. The proposed technique has been applied to several benchmark brain MR images and the results reveal excellent accuracy in characterizing human brain MR imaging.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Engineering & Physics - Volume 30, Issue 5, June 2008, Pages 615–623
نویسندگان
, ,