| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8866655 | 1621191 | 2018 | 8 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Identification of tidal mixing fronts from high-resolution along-track altimetry data
												
											ترجمه فارسی عنوان
													شناسایی جبهه اختلاط جزر و مد با اطلاعات با وضوح بالا در امتداد مسیر ارتفاع سنجی 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													علوم زمین و سیارات
													کامپیوتر در علوم زمین
												
											چکیده انگلیسی
												Coastal fronts can significantly impact the cross-shelf material exchange and the marine ecosystem. Therefore, it is important to detect their locations and intensities as well as temporal evolutions. In this article, we show that coastal tidal mixing front (TMF) signals can be extracted from both 20-Hz and 1-Hz along-track sea surface height anomalies (SSHA) measured by satellite altimetry. The physical mechanism for the existence of the TMF in the SSHA data is explained. Then the Hilbert-Huang Transform is applied to selected along-track Jason-2 data over Georges Bank. The extracted fronts have a cross-front sea surface height difference of 13-21â¯cm over distance of 20-27.5â¯km. The surface geostrophic current anomalies associated with these fronts are estimated to be 0.38-0.45â¯mâ¯sâ1, consistent generally with previous studies from in situ observations. The present study clearly demonstrates the potential of satellite altimetry for monitoring TMFs. It is also shown that tidal fronts can be better extracted from the 20-Hz than 1-Hz data.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 209, May 2018, Pages 489-496
											Journal: Remote Sensing of Environment - Volume 209, May 2018, Pages 489-496
نویسندگان
												Changming Dong, Guangjun Xu, Guoqi Han, Nancy Chen, Yijun He, Dake Chen, 
											