| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8896585 | 1630586 | 2018 | 81 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Spectral enclosures for non-self-adjoint extensions of symmetric operators
												
											ترجمه فارسی عنوان
													محدوده طیفی برای پسوند غیر متعارف اپراتورهای متقارن
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													اعداد جبر و تئوری 
												
											چکیده انگلیسی
												The spectral properties of non-self-adjoint extensions A[B] of a symmetric operator in a Hilbert space are studied with the help of ordinary and quasi boundary triples and the corresponding Weyl functions. These extensions are given in terms of abstract boundary conditions involving an (in general non-symmetric) boundary operator B. In the abstract part of this paper, sufficient conditions for sectoriality and m-sectoriality as well as sufficient conditions for A[B] to have a non-empty resolvent set are provided in terms of the parameter B and the Weyl function. Special attention is paid to Weyl functions that decay along the negative real line or inside some sector in the complex plane, and spectral enclosures for A[B] are proved in this situation. The abstract results are applied to elliptic differential operators with local and non-local Robin boundary conditions on unbounded domains, to Schrödinger operators with δ-potentials of complex strengths supported on unbounded hypersurfaces or infinitely many points on the real line, and to quantum graphs with non-self-adjoint vertex couplings.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 275, Issue 7, 1 October 2018, Pages 1808-1888
											Journal: Journal of Functional Analysis - Volume 275, Issue 7, 1 October 2018, Pages 1808-1888
نویسندگان
												Jussi Behrndt, Matthias Langer, Vladimir Lotoreichik, Jonathan Rohleder, 
											