کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8897057 | 1630629 | 2018 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Representations of Weil-Deligne groups and Frobenius conjugacy classes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let X be a smooth projective algebraic variety over a number field F, with an embedding Ï:FâªC. The action of Gal(F¯/F) on â-adic cohomology groups Heti(X/F¯,Qâ), induces Galois representations Ïâi:Gal(F¯/F)âGL(Heti(X/F¯,Qâ)). Fix a non-archimedean valuation v on F, of residual characteristic p. Let Fv be the completion of F at v and â²Wv be the Weil-Deligne group of Fv. We establish new cases, for which the linear representations Ïâi_ of â²Wv, associated to Ïâi, form a compatible system of representations of â²Wv defined over Q. Under suitable hypotheses, we show that in some cases, these representations actually form a compatible system of representations of â²Wv, with values in the Mumford-Tate group of HBi(ÏX(C),Q). When X has good reduction at v, we establish a motivic relationship between the compatibility of the system {Ïâi}ââ p and the conjugacy class of the crystalline Frobenius of the reduction of X at v.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 185, April 2018, Pages 396-422
Journal: Journal of Number Theory - Volume 185, April 2018, Pages 396-422
نویسندگان
Abhijit Laskar,